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Introduction
Vectors

I Any entity involving both magnitude and direction is called a
"vector."

I A vector is represented by an arrow whose length denotes the
magnitude of the vector and whose direction represents the
direction of the vector.

A. Vinoth | Vector Spaces(Unit-I)



2

Introduction
Vectors

I Any entity involving both magnitude and direction is called a
"vector."

I A vector is represented by an arrow whose length denotes the
magnitude of the vector and whose direction represents the
direction of the vector.

A. Vinoth | Vector Spaces(Unit-I)



3

Introduction
Vector Addition

Parallelogram Law for Vector Addition.
The sum of two vectors x and y that act at the same point is the
vector beginning at that is represented by the diagonal of
parallelogram having x and y as adjacent sides.
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Introduction
Scalar Multiplication

Besides the operation of vector addition, there is another natural
operation that can be performed on vectors–the length of a vector
may be magnified or contracted. This operation, called scalar
multiplication, consists of multiplying the vector by a real number.
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Problems

1. Determine whether the vectors emanating from the origin and
terminating at the following pairs of points are parallel.
(a) (3, 1, 2) and (6, 4, 2)

(b) (−3, 1, 7) and (9,−3,−21)

(c) (5,−6, 7) and (−5, 6,−7)

(d) (2, 0,−5) and (5, 0,−2)

2. Find the equations of the lines through the following pairs of points
in space.
(a) (3,−2, 4) and (−5, 7, 1)

(b) (2, 4, 0) and (−3,−6, 0)

(c) (3, 7, 2) and (3, 7,−8)

(d) (−2,−1, 5) and (3, 9, 7)
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Definition- Vector space

Definition
A vector space (or linear space) V over a field F consists of a set on
which two operations (called addition and scalar multiplication,
respectively) are defined so that for each pair of elements x, y in V
there is a unique element x+ y in V , and for each element a in F and
each element x in V there is a unique element ax in V , such that the
following conditions hold.
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Definition-Vector space

Definition
1. For all x, y ∈ V, x+ y = y + x .
2. For all x, y, z ∈ V, (x+ y) + z = x+ (y + z).
3. There exist an element in V denoted by 0 such that x+ 0 = x for

each x ∈ V .
4. For each element x ∈ V there exists an element y in V such that

x+ y = 0.
5. For each element x ∈ V , 1x = x.
6. For each pair of elements a, b in F and each element x ∈ V ,

(ab)x = a(bx).
7. For each element a ∈ F and each pair of elements x, y ∈ V ,

a(x+ y) = ax+ ay.
8. For each pair of elements a, b ∈ F and each elements x ∈ V ,

(a+ b)x = ax+ bx.
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NOTE:

1. The elements x+ y and ax are called the sum of x and y and the
product of a and x, respectively.

2. The elements of the field F are called scalars and the elements
of the vector space V are called vectors.

3. The word “vector” is now being used to describe any element of
a vector space.
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Examples

1. Let F be a field. The set of all n−tuples
Fn = {(a1, a2, . . . , an)|ai ∈ F, i = 1, 2, . . . , n} is a vector space
over F with coordinatewise addition and scalar multiplication.

2. Let Mm×n(F ) denotes the set of all m× n matrices with entries
from the field F . Then Mm×n(F ) is a vector space over F with
matrix addition and scalar multiplication.

3. Let S be any nonempty set and F be any field, and let F (S, F )
denote the set of all functions from S to F . Two functions f and
g in F (S, F ) are called equal if f(s) = g(s) for each s ∈ S. The
set F (S, F ) is a vector space with the operations of addition and
scalar multiplication defined for f, g ∈ F (S, F ) and c ∈ F by

(f + g)(s) = f(s) + g(s) and (cf)(s) = c[f(s)]

A. Vinoth | Vector Spaces(Unit-I)
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Examples

4. The set of all polynomials with coefficients from a field F is a
vector space over F with usual addition and scalar multiplication
of polynomials.

5. Let V consist of all sequences {an} in F that have only a finite
number of nonzero terms an. If {an} and {bn} are in V and
t ∈ F , define {an}+ {bn} = {an + bn} and t{an} = {tan}.
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Cancellation Law for Vector Addition

Theorem (Cancellation Law for Vector Addition)
If x, y and z are vectors in a vector space V such that x+ z = y + z,
then x = y.
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Cancellation Law for Vector Addition

Proof.
As z ∈ V and V is a vector space, there exists a vector v ∈ V such
that z + v = 0. Hence

x = x+ 0

= x+ (z + v)

= (x+ z) + v

= (y + z) + v

= y + (z + v)

= y + 0

= y
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Corollary
The vector 0 in any vector space is unique.

Proof.
Suppose 0, 0′ ∈ V such that x+ 0 = x and x+ 0′ = x. Thus
x+ 0 = x+ 0′. Then by cancellation law for vector addition 0 = 0′.
Hence proved.

Note:
The vector 0 is called the zero vector of V.
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Corollary
The vector y described in condition (4) of the definition of Vector
space is unique.

Proof.
!!!!!! Just try by yourself !!!!!!

Note:
the vector y is called the additive inverse of x and is denoted by −x.
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14

Corollary
The vector y described in condition (4) of the definition of Vector
space is unique.

Proof.
!!!!!! Just try by yourself !!!!!!

Note:
the vector y is called the additive inverse of x and is denoted by −x.

A. Vinoth | Vector Spaces(Unit-I)



14

Corollary
The vector y described in condition (4) of the definition of Vector
space is unique.

Proof.
!!!!!! Just try by yourself !!!!!!

Note:
the vector y is called the additive inverse of x and is denoted by −x.

A. Vinoth | Vector Spaces(Unit-I)



15

Theorem
In any vector space V , the following statements are true:

(a) 0x = 0 for each x ∈ V .

(b) (−a)x = −(ax) = a(−x) for each a ∈ F and each x ∈ V .

(c) a0 = 0 for each a ∈ F .
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Proof.
(a) Let x be any vector in V . Then

0x+ 0x = (0 + 0)x

= 0x

= 0x+ 0

= 0 + 0x

By Cancellation Law for Vector Addition, we have 0x = 0.
(b) Since −(ax) is the unique additive inverse of ax,

ax+ [−(ax)] = 0. (1)

Now,
ax+ (−a)x = [a+ (−a)]x = 0x = 0 (2)

From equation (1) and (2), we have (−a)x = −(ax). In particular,
(−1)x = −x. Now

a(−x) = a[(−1)x] = [a(−1)]x = (−a)x.

The proof of (c) is similar to (a)
A. Vinoth | Vector Spaces(Unit-I)
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Subspaces

Definition
A subset W of a vector space V over a field F is called a subspace of
V if W is a vector space over F with the operations of addition and
scalar multiplication defined on V .

Note:
In any vector space V , V and {0} are subspaces.

A. Vinoth | Vector Spaces(Unit-I)
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Theorem
Let V be a vector space and W a subset of V . Then W is a subspace
of V if and only if the following three conditions hold for the operations
defined in V .

1. 0 ∈W
2. x+ y ∈W whenever x ∈W and y ∈W .
3. cx ∈W whenever c ∈ F and x ∈W .
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Remarks:
The transpose At of an m× n matrix A is the n×m matrix obtained
from A by interchanging the rows with the columns; that is,
(At)ij = Aji. A symmetric matrix is a matrix A such that At = A.

1. The set W of all symmetric matrices in Mn×n(F ) is a subspace
of Mn×n(F ).
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Theorem
Any intersection of subspaces of a vector space V is a subspace of
V .

Remark:
1. Union of subspaces need not be a subspace
2. Union of two subspaces of a vector space V is a subspace of V

if and only if one of the subspaces contains other.
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Definition
Let V be a vector space and S a nonempty subset of V . A vector
v ∈ V is called a linear combination of vectors of S if there exist a
finite number of vectors u1, u2, . . . , un in S and scalars a1, a2, . . . , an
in F such that v = a1u1 + a2u2 + . . .+ anun . In this case we also say
that v is a linear combination of u1, u2, . . . , un and call a1, a2, . . . , an
the coefficients of the linear combination.

Problem
Express (2, 6, 8) as a linear combination of
u1 = (1, 2, 1), u2 = (−2,−4,−2), u3 = (0, 2, 3),
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Problem
Prove that 2x3 − 2x2 + 12x− 6 is a linear combination of
x3 − 2x2 − 5x− 3 and 3x3 − 5x2 − 4x− 9. Also show that
3x3 − 2x2 + 7x+ 8 is not a linear combination of x3 − 2x2 − 5x− 3
and 3x3 − 5x2 − 4x− 9.

Definition
Let S be a nonempty subset of a vector space V . The span of S,
denoted span(S), is the set consisting of all linear combinations of the
vectors in S. For convenience, we define span(∅) = {0}.
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Example
In R3, the span of the set {(1, 0, 0), (0, 1, 0)} consists of all vectors in
R3 that have the form a(1, 0, 0) + b(0, 1, 0) = (a, b, 0) for some scalars
a and b. Thus the span of {(1, 0, 0), (0, 1, 0)} contains all the points in
the xy-plane.

Theorem
The span of any subset S of a vector space V is a subspace of V .
Moreover, any subspace of V that contains S must also contain the
span of S.

A. Vinoth | Vector Spaces(Unit-I)
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Definition
A subset S of a vector space V generates (or spans) V if span(S) =
V . In this case, we also say that the vectors of S generate (or span)
V .

Problem
Show that the vectors (1, 1, 0), (1, 0, 1), and (0, 1, 1) generate R3

Problem
Show that the polynomials x2 + 3x− 2, 2x2 + 5x− 3, and
−x2 − 4x+ 4 generate P2(R)
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Problem

Show that the matrices
[

1 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

]
and

[
0 1
1 1

]
generate M2×2(R).

A. Vinoth | Vector Spaces(Unit-I)



26

Linear Dependence and Linear Independence

Definition
A subset S of a vector space V is called linearly dependent if there
exist a finite number of distinct vectors u1, u2, . . . , un in S and scalars
a1, a2, . . . , an, not all zero, such that a1u1 + a2u2 + . . .+ anun = 0.

Problem
Let S = {(1, 3,−4, 2), (2, 2,−4, 0), (1,−3, 2,−4), (−1, 0, 1, 0)} be a set
in R4. Show that S is linearly dependent in R4

Problem
Show that the set{[

1 −3 2
−4 0 5

]
,

[
−3 7 4
6 −2 −7

]
,

[
−2 3 11
−1 −3 2

]}
in M2×3(R)

is linearly dependent.

A. Vinoth | Vector Spaces(Unit-I)
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Definition
A subset S of a vector space that is not linearly dependent is called
linearly independent.

Problem
Show that the set
S = {(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1), (0, 0, 0, 1)} is linearly
independent

Problem
Let pk(x) = xk + xk+1 + · · ·+ xn, k = 0, 1, . . . , n. Show that the set
{p0(x), p1(x), . . . , pn(x)} is linearly independent in Pn(F )
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Theorem
Let V be a vector space, and let S1 ⊆ S2 ⊆ V . If S1 is linearly
dependent, then S2 is linearly dependent.

Theorem
Let V be a vector space, and let S1 ⊆ S2 ⊆ V . If S2 is linearly
independent, then S1 is linearly independent.

Theorem
Let S be a linearly independent subset of a vector space V , and let v
be a vector in V that is not in S. Then S ∪ {v} is linearly dependent if
and only if v ∈ span(S).
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Note:
The empty set is linearly independent, for linearly dependent sets
must be nonempty.

A. Vinoth | Vector Spaces(Unit-I)
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Bases and Dimension

Definition
A basis β for a vector space V is a linearly independent subset of V
that generates V .

Example
We know that span(φ) = {0} and φ is linearly independent, hence φ is
a basis for the zero vector space.

Example
In Fn , let e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, 0, ..., 0, 1);
It is easy to see that {e1, e2, ..., en} is a basis for Fn and is called the
standard basis for Fn .
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Bases and Dimension

Example
In Mm×n(F ), let Eij denote the matrix whose only nonzero entry is a
1 in the ith row and jth column. Then {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is
a basis for Mm×n(F ).

Example
In Pn(F ) the set {1, x, x2, . . . , xn} is a basis. This basis is called the
standard basis for Pn(F )

Example
The set {1, x, x2, . . .} is a basis for P (F ).
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Bases and Dimension

Theorem
Let V be a vector space and β = {u1, u2, . . . , un} be a subset of V .
Then β is a basis for V if and only if each v ∈ V can be uniquely
expressed as a linear combination of vectors of β, that is, can be
expressed in the form

v = a1u1 + a2u2 + · · ·+ anun

for unique scalars a1, a2, . . . , an.

Theorem
If a vector space V is generated by a finite set S, then some subset of
S is a basis for V . Hence V has a finite basis.
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Bases and Dimension

Problem
Let S = {(2,−3, 5), (8,−12, 20), (1, 0,−2), (0, 2,−1), (7, 2, 0)} be
subset of R3. Extract a basis for R3 which is a subset of S.

Theorem (Replacement Theorem)
Let V be a vector space that is generated by a set G containing
exactly n vectors, and let L be a linearly independent subset of V
containing exactly m vectors. Then m ≤ n and there exists a subset
H of G containing exactly n−m vectors such that L∪H generates V .

Corollary
Let V be a vector space having a finite basis. Then every basis for V
contains the same number of vectors.
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exactly n vectors, and let L be a linearly independent subset of V
containing exactly m vectors. Then m ≤ n and there exists a subset
H of G containing exactly n−m vectors such that L∪H generates V .

Corollary
Let V be a vector space having a finite basis. Then every basis for V
contains the same number of vectors.
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Bases and Dimension

Definition
A vector space is called finite-dimensional if it has a basis consisting
of a finite number of vectors. The unique number of vectors in each
basis for V is called the dimension of V and is denoted by dim(V ). A
vector space that is not finite-dimensional is called
infinite-dimensional.

Examples
1. dim({0}) = 0

2. dim(C) = 1 over the field C
3. dim(C) = 2 over the field R
4. dim(Fn) = n

5. dim(Mm×n) = mn

6. dim(Pn(F )) =�n(?????) = n+ 1
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Bases and Dimension

Theorem
Let V be a vector space with dimension n.
(a) Any finite generating set for V contains at least n vectors, and a
generating set for V that contains exactly n vectors is a basis for V .
(b) Any linearly independent subset of V that contains exactly n
vectors is a basis for V .
(c) Every linearly independent subset of V can be extended to a
basis for V .
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1. Show that {x2 + 3x− 2, 2x2 + 5x− 3,−x2 − 4x+ 4} is a basis for
P2(R.

2. Show that
{[

1 1
1 0

]
,

[
1 1
0 1

]
,

[
1 0
1 1

] [
0 1
1 1

]}
is a basis

for M2×2(R)

3. Show that the set
S = {(1, 0, 0,−1), (0, 1, 0,−1), (0, 0, 1,−1), (0, 0, 0, 1)} is a basis
for R4

4. Let pk(x) = xk + xk+1 + · · ·+ xn, k = 0, 1, . . . , n. Show that the
set {p0(x), p1(x), . . . , pn(x)} is a basis for Pn(F )

A. Vinoth | Vector Spaces(Unit-I)



37

Theorem
Let W be a subspace of a finite-dimensional vector space V . Then W
is finite-dimensional and dim(W ) ≤ dim(V ). Moreover, if
dim(W ) = dim(V ), then V = W.

1. Let W = {(a1, a2, a3, a4, a5) ∈ F 5 : a1 + a3 + a5 = 0, a2 = a4}. Is
W a subspace of F 5? If so, find its basis and dimension.

2. Is the set of all n× n diagonal matrices a subspace of Mn×n. If
so, find its basis and dimension.

3. Is the set of all n× n symmetric matrices a subspace of Mn×n. If
so, find its basis and dimension.
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Corollary
If W is a subspace of a finite-dimensional vector space V , then any
basis for W can be extended to a basis for V .

Lagrange polynomials
Let c0, c1, ..., cn be distinct scalars in an infinite field F . The
polynomials f0(x), f1(x), ..., fn(x) defined by

fi(x) =
(x− c1)(x− c2) · · · (x− ci−1)(x− ci+1) . . . (x− cn)

(ci − c1)(ci − c2) · · · (ci − ci−1)(ci − ci+1) . . . (ci − cn)

= Πn
k=0,k 6=i

x− ck
ci − ck

are called the Lagrange polynomials (associated with c0, c1, ..., cn).
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Linear Transformations

Definition
Let V and W be vector spaces (over F ). We call a function
T : V →W a linear transformation from V to W if, for all x, y ∈ V and
c ∈ F , we have

1. T (x+ y) = T (x) + T (y)

2. T (cx) = cT (x)

Example
Define T : R2 → R2 by T (a1, a2) = (2a1 + a2, a1). Then T is a linear
Transformation.
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Linear Transformations

Problem
Prove that every linear transformation T from R to R is of the form
T (x) = cx for some fixed c ∈ R

Problem
Prove that every linear transformation T from R2 to R2 is of the form
T (x, y) = (ax+ by, cx+ dy) for some fixed a, b, c, d ∈ R
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